Source code for filterpy.kalman.sigma_points

# -*- coding: utf-8 -*-
# pylint: disable=invalid-name, too-many-instance-attributes

"""Copyright 2015 Roger R Labbe Jr.

FilterPy library.
http://github.com/rlabbe/filterpy

Documentation at:
https://filterpy.readthedocs.org

Supporting book at:
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python

This is licensed under an MIT license. See the readme.MD file
for more information.
"""

from __future__ import division
import numpy as np
from scipy.linalg import cholesky
from filterpy.common import pretty_str

[docs]class MerweScaledSigmaPoints(object): """ Generates sigma points and weights according to Van der Merwe's 2004 dissertation[1] for the UnscentedKalmanFilter class.. It parametizes the sigma points using alpha, beta, kappa terms, and is the version seen in most publications. Unless you know better, this should be your default choice. Parameters ---------- n : int Dimensionality of the state. 2n+1 weights will be generated. alpha : float Determins the spread of the sigma points around the mean. Usually a small positive value (1e-3) according to [3]. beta : float Incorporates prior knowledge of the distribution of the mean. For Gaussian x beta=2 is optimal, according to [3]. kappa : float, default=0.0 Secondary scaling parameter usually set to 0 according to [4], or to 3-n according to [5]. sqrt_method : function(ndarray), default=scipy.linalg.cholesky Defines how we compute the square root of a matrix, which has no unique answer. Cholesky is the default choice due to its speed. Typically your alternative choice will be scipy.linalg.sqrtm. Different choices affect how the sigma points are arranged relative to the eigenvectors of the covariance matrix. Usually this will not matter to you; if so the default cholesky() yields maximal performance. As of van der Merwe's dissertation of 2004 [6] this was not a well reseached area so I have no advice to give you. If your method returns a triangular matrix it must be upper triangular. Do not use numpy.linalg.cholesky - for historical reasons it returns a lower triangular matrix. The SciPy version does the right thing. subtract : callable (x, y), optional Function that computes the difference between x and y. You will have to supply this if your state variable cannot support subtraction, such as angles (359-1 degreees is 2, not 358). x and y are state vectors, not scalars. Attributes ---------- Wm : np.array weight for each sigma point for the mean Wc : np.array weight for each sigma point for the covariance Examples -------- See my book Kalman and Bayesian Filters in Python https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python References ---------- .. [1] R. Van der Merwe "Sigma-Point Kalman Filters for Probabilitic Inference in Dynamic State-Space Models" (Doctoral dissertation) """
[docs] def __init__(self, n, alpha, beta, kappa, sqrt_method=None, subtract=None): #pylint: disable=too-many-arguments self.n = n self.alpha = alpha self.beta = beta self.kappa = kappa if sqrt_method is None: self.sqrt = cholesky else: self.sqrt = sqrt_method if subtract is None: self.subtract = np.subtract else: self.subtract = subtract self._compute_weights()
[docs] def num_sigmas(self): """ Number of sigma points for each variable in the state x""" return 2*self.n + 1
[docs] def sigma_points(self, x, P): """ Computes the sigma points for an unscented Kalman filter given the mean (x) and covariance(P) of the filter. Returns tuple of the sigma points and weights. Works with both scalar and array inputs: sigma_points (5, 9, 2) # mean 5, covariance 9 sigma_points ([5, 2], 9*eye(2), 2) # means 5 and 2, covariance 9I Parameters ---------- x : An array-like object of the means of length n Can be a scalar if 1D. examples: 1, [1,2], np.array([1,2]) P : scalar, or np.array Covariance of the filter. If scalar, is treated as eye(n)*P. Returns ------- sigmas : np.array, of size (n, 2n+1) Two dimensional array of sigma points. Each column contains all of the sigmas for one dimension in the problem space. Ordered by Xi_0, Xi_{1..n}, Xi_{n+1..2n} """ if self.n != np.size(x): raise ValueError("expected size(x) {}, but size is {}".format( self.n, np.size(x))) n = self.n if np.isscalar(x): x = np.asarray([x]) if np.isscalar(P): P = np.eye(n)*P else: P = np.atleast_2d(P) lambda_ = self.alpha**2 * (n + self.kappa) - n U = self.sqrt((lambda_ + n)*P) sigmas = np.zeros((2*n+1, n)) sigmas[0] = x for k in range(n): # pylint: disable=bad-whitespace sigmas[k+1] = self.subtract(x, -U[k]) sigmas[n+k+1] = self.subtract(x, U[k]) return sigmas
def _compute_weights(self): """ Computes the weights for the scaled unscented Kalman filter. """ n = self.n lambda_ = self.alpha**2 * (n +self.kappa) - n c = .5 / (n + lambda_) self.Wc = np.full(2*n + 1, c) self.Wm = np.full(2*n + 1, c) self.Wc[0] = lambda_ / (n + lambda_) + (1 - self.alpha**2 + self.beta) self.Wm[0] = lambda_ / (n + lambda_) def __repr__(self): return '\n'.join([ 'MerweScaledSigmaPoints object', pretty_str('n', self.n), pretty_str('alpha', self.alpha), pretty_str('beta', self.beta), pretty_str('kappa', self.kappa), pretty_str('Wm', self.Wm), pretty_str('Wc', self.Wc), pretty_str('subtract', self.subtract), pretty_str('sqrt', self.sqrt) ])
[docs]class JulierSigmaPoints(object): """ Generates sigma points and weights according to Simon J. Julier and Jeffery K. Uhlmann's original paper[1]. It parametizes the sigma points using kappa. Parameters ---------- n : int Dimensionality of the state. 2n+1 weights will be generated. kappa : float, default=0. Scaling factor that can reduce high order errors. kappa=0 gives the standard unscented filter. According to [Julier], if you set kappa to 3-dim_x for a Gaussian x you will minimize the fourth order errors in x and P. sqrt_method : function(ndarray), default=scipy.linalg.cholesky Defines how we compute the square root of a matrix, which has no unique answer. Cholesky is the default choice due to its speed. Typically your alternative choice will be scipy.linalg.sqrtm. Different choices affect how the sigma points are arranged relative to the eigenvectors of the covariance matrix. Usually this will not matter to you; if so the default cholesky() yields maximal performance. As of van der Merwe's dissertation of 2004 [6] this was not a well reseached area so I have no advice to give you. If your method returns a triangular matrix it must be upper triangular. Do not use numpy.linalg.cholesky - for historical reasons it returns a lower triangular matrix. The SciPy version does the right thing. subtract : callable (x, y), optional Function that computes the difference between x and y. You will have to supply this if your state variable cannot support subtraction, such as angles (359-1 degreees is 2, not 358). x and y Attributes ---------- Wm : np.array weight for each sigma point for the mean Wc : np.array weight for each sigma point for the covariance References ---------- .. [1] Julier, Simon J.; Uhlmann, Jeffrey "A New Extension of the Kalman Filter to Nonlinear Systems". Proc. SPIE 3068, Signal Processing, Sensor Fusion, and Target Recognition VI, 182 (July 28, 1997) """
[docs] def __init__(self, n, kappa=0., sqrt_method=None, subtract=None): self.n = n self.kappa = kappa if sqrt_method is None: self.sqrt = cholesky else: self.sqrt = sqrt_method if subtract is None: self.subtract = np.subtract else: self.subtract = subtract self._compute_weights()
[docs] def num_sigmas(self): """ Number of sigma points for each variable in the state x""" return 2*self.n + 1
[docs] def sigma_points(self, x, P): r""" Computes the sigma points for an unscented Kalman filter given the mean (x) and covariance(P) of the filter. kappa is an arbitrary constant. Returns sigma points. Works with both scalar and array inputs: sigma_points (5, 9, 2) # mean 5, covariance 9 sigma_points ([5, 2], 9*eye(2), 2) # means 5 and 2, covariance 9I Parameters ---------- x : array-like object of the means of length n Can be a scalar if 1D. examples: 1, [1,2], np.array([1,2]) P : scalar, or np.array Covariance of the filter. If scalar, is treated as eye(n)*P. kappa : float Scaling factor. Returns ------- sigmas : np.array, of size (n, 2n+1) 2D array of sigma points :math:`\chi`. Each column contains all of the sigmas for one dimension in the problem space. They are ordered as: .. math:: :nowrap: \begin{eqnarray} \chi[0] = &x \\ \chi[1..n] = &x + [\sqrt{(n+\kappa)P}]_k \\ \chi[n+1..2n] = &x - [\sqrt{(n+\kappa)P}]_k \end{eqnarray} """ if self.n != np.size(x): raise ValueError("expected size(x) {}, but size is {}".format( self.n, np.size(x))) n = self.n if np.isscalar(x): x = np.asarray([x]) n = np.size(x) # dimension of problem if np.isscalar(P): P = np.eye(n) * P else: P = np.atleast_2d(P) sigmas = np.zeros((2*n+1, n)) # implements U'*U = (n+kappa)*P. Returns lower triangular matrix. # Take transpose so we can access with U[i] U = self.sqrt((n + self.kappa) * P) sigmas[0] = x for k in range(n): # pylint: disable=bad-whitespace sigmas[k+1] = self.subtract(x, -U[k]) sigmas[n+k+1] = self.subtract(x, U[k]) return sigmas
def _compute_weights(self): """ Computes the weights for the unscented Kalman filter. In this formulation the weights for the mean and covariance are the same. """ n = self.n k = self.kappa self.Wm = np.full(2*n+1, .5 / (n + k)) self.Wm[0] = k / (n+k) self.Wc = self.Wm def __repr__(self): return '\n'.join([ 'JulierSigmaPoints object', pretty_str('n', self.n), pretty_str('kappa', self.kappa), pretty_str('Wm', self.Wm), pretty_str('Wc', self.Wc), pretty_str('subtract', self.subtract), pretty_str('sqrt', self.sqrt) ])
[docs]class SimplexSigmaPoints(object): """ Generates sigma points and weights according to the simplex method presented in [1]. Parameters ---------- n : int Dimensionality of the state. n+1 weights will be generated. sqrt_method : function(ndarray), default=scipy.linalg.cholesky Defines how we compute the square root of a matrix, which has no unique answer. Cholesky is the default choice due to its speed. Typically your alternative choice will be scipy.linalg.sqrtm If your method returns a triangular matrix it must be upper triangular. Do not use numpy.linalg.cholesky - for historical reasons it returns a lower triangular matrix. The SciPy version does the right thing. subtract : callable (x, y), optional Function that computes the difference between x and y. You will have to supply this if your state variable cannot support subtraction, such as angles (359-1 degreees is 2, not 358). x and y are state vectors, not scalars. Attributes ---------- Wm : np.array weight for each sigma point for the mean Wc : np.array weight for each sigma point for the covariance References ---------- .. [1] Phillippe Moireau and Dominique Chapelle "Reduced-Order Unscented Kalman Filtering with Application to Parameter Identification in Large-Dimensional Systems" DOI: 10.1051/cocv/2010006 """
[docs] def __init__(self, n, alpha=1, sqrt_method=None, subtract=None): self.n = n self.alpha = alpha if sqrt_method is None: self.sqrt = cholesky else: self.sqrt = sqrt_method if subtract is None: self.subtract = np.subtract else: self.subtract = subtract self._compute_weights()
[docs] def num_sigmas(self): """ Number of sigma points for each variable in the state x""" return self.n + 1
[docs] def sigma_points(self, x, P): """ Computes the implex sigma points for an unscented Kalman filter given the mean (x) and covariance(P) of the filter. Returns tuple of the sigma points and weights. Works with both scalar and array inputs: sigma_points (5, 9, 2) # mean 5, covariance 9 sigma_points ([5, 2], 9*eye(2), 2) # means 5 and 2, covariance 9I Parameters ---------- x : An array-like object of the means of length n Can be a scalar if 1D. examples: 1, [1,2], np.array([1,2]) P : scalar, or np.array Covariance of the filter. If scalar, is treated as eye(n)*P. Returns ------- sigmas : np.array, of size (n, n+1) Two dimensional array of sigma points. Each column contains all of the sigmas for one dimension in the problem space. Ordered by Xi_0, Xi_{1..n} """ if self.n != np.size(x): raise ValueError("expected size(x) {}, but size is {}".format( self.n, np.size(x))) n = self.n if np.isscalar(x): x = np.asarray([x]) x = x.reshape(-1, 1) if np.isscalar(P): P = np.eye(n) * P else: P = np.atleast_2d(P) U = self.sqrt(P) lambda_ = n / (n + 1) Istar = np.array([[-1/np.sqrt(2*lambda_), 1/np.sqrt(2*lambda_)]]) for d in range(2, n+1): row = np.ones((1, Istar.shape[1] + 1)) * 1. / np.sqrt(lambda_*d*(d + 1)) row[0, -1] = -d / np.sqrt(lambda_ * d * (d + 1)) Istar = np.r_[np.c_[Istar, np.zeros((Istar.shape[0]))], row] I = np.sqrt(n)*Istar scaled_unitary = U.dot(I) sigmas = self.subtract(x, -scaled_unitary) return sigmas.T
def _compute_weights(self): """ Computes the weights for the scaled unscented Kalman filter. """ n = self.n c = 1. / (n + 1) self.Wm = np.full(n + 1, c) self.Wc = self.Wm def __repr__(self): return '\n'.join([ 'SimplexSigmaPoints object', pretty_str('n', self.n), pretty_str('alpha', self.alpha), pretty_str('Wm', self.Wm), pretty_str('Wc', self.Wc), pretty_str('subtract', self.subtract), pretty_str('sqrt', self.sqrt) ])