Source code for filterpy.common.discretization

# -*- coding: utf-8 -*-
"""Copyright 2015 Roger R Labbe Jr.

FilterPy library.
http://github.com/rlabbe/filterpy

Documentation at:
https://filterpy.readthedocs.org

Supporting book at:
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python

This is licensed under an MIT license. See the readme.MD file
for more information.
"""

#pylint:disable=invalid-name, bad-whitespace


from __future__ import (absolute_import, division, print_function,
                        unicode_literals)


from numpy import zeros, vstack, eye, array
from numpy.linalg import inv
from scipy.linalg import expm, block_diag


def order_by_derivative(Q, dim, block_size):
    """
    Given a matrix Q, ordered assuming state space
        [x y z x' y' z' x'' y'' z''...]

    return a reordered matrix assuming an ordering of
       [ x x' x'' y y' y'' z z' y'']

    This works for any covariance matrix or state transition function

    Parameters
    ----------
    Q : np.array, square
        The matrix to reorder

    dim : int >= 1

       number of independent state variables. 3 for x, y, z

    block_size : int >= 0
        Size of derivatives. Second derivative would be a block size of 3
        (x, x', x'')


    """

    N = dim * block_size

    D = zeros((N, N))

    Q = array(Q)
    for i, x in enumerate(Q.ravel()):
        f = eye(block_size) * x

        ix, iy = (i // dim) * block_size, (i % dim) * block_size
        D[ix:ix+block_size, iy:iy+block_size] = f

    return D



[docs]def Q_discrete_white_noise(dim, dt=1., var=1., block_size=1, order_by_dim=True): """ Returns the Q matrix for the Discrete Constant White Noise Model. dim may be either 2, 3, or 4 dt is the time step, and sigma is the variance in the noise. Q is computed as the G * G^T * variance, where G is the process noise per time step. In other words, G = [[.5dt^2][dt]]^T for the constant velocity model. Parameters ----------- dim : int (2, 3, or 4) dimension for Q, where the final dimension is (dim x dim) dt : float, default=1.0 time step in whatever units your filter is using for time. i.e. the amount of time between innovations var : float, default=1.0 variance in the noise block_size : int >= 1 If your state variable contains more than one dimension, such as a 3d constant velocity model [x x' y y' z z']^T, then Q must be a block diagonal matrix. order_by_dim : bool, default=True Defines ordering of variables in the state vector. `True` orders by keeping all derivatives of each dimensions) [x x' x'' y y' y''] whereas `False` interleaves the dimensions [x y z x' y' z' x'' y'' z''] Examples -------- >>> # constant velocity model in a 3D world with a 10 Hz update rate >>> Q_discrete_white_noise(2, dt=0.1, var=1., block_size=3) array([[0.000025, 0.0005 , 0. , 0. , 0. , 0. ], [0.0005 , 0.01 , 0. , 0. , 0. , 0. ], [0. , 0. , 0.000025, 0.0005 , 0. , 0. ], [0. , 0. , 0.0005 , 0.01 , 0. , 0. ], [0. , 0. , 0. , 0. , 0.000025, 0.0005 ], [0. , 0. , 0. , 0. , 0.0005 , 0.01 ]]) References ---------- Bar-Shalom. "Estimation with Applications To Tracking and Navigation". John Wiley & Sons, 2001. Page 274. """ if not (dim == 2 or dim == 3 or dim == 4): raise ValueError("dim must be between 2 and 4") if dim == 2: Q = [[.25*dt**4, .5*dt**3], [ .5*dt**3, dt**2]] elif dim == 3: Q = [[.25*dt**4, .5*dt**3, .5*dt**2], [ .5*dt**3, dt**2, dt], [ .5*dt**2, dt, 1]] else: Q = [[(dt**6)/36, (dt**5)/12, (dt**4)/6, (dt**3)/6], [(dt**5)/12, (dt**4)/4, (dt**3)/2, (dt**2)/2], [(dt**4)/6, (dt**3)/2, dt**2, dt], [(dt**3)/6, (dt**2)/2 , dt, 1.]] if order_by_dim: return block_diag(*[Q]*block_size) * var return order_by_derivative(array(Q), dim, block_size) * var
[docs]def Q_continuous_white_noise(dim, dt=1., spectral_density=1., block_size=1, order_by_dim=True): """ Returns the Q matrix for the Discretized Continuous White Noise Model. dim may be either 2, 3, 4, dt is the time step, and sigma is the variance in the noise. Parameters ---------- dim : int (2 or 3 or 4) dimension for Q, where the final dimension is (dim x dim) 2 is constant velocity, 3 is constant acceleration, 4 is constant jerk dt : float, default=1.0 time step in whatever units your filter is using for time. i.e. the amount of time between innovations spectral_density : float, default=1.0 spectral density for the continuous process block_size : int >= 1 If your state variable contains more than one dimension, such as a 3d constant velocity model [x x' y y' z z']^T, then Q must be a block diagonal matrix. order_by_dim : bool, default=True Defines ordering of variables in the state vector. `True` orders by keeping all derivatives of each dimensions) [x x' x'' y y' y''] whereas `False` interleaves the dimensions [x y z x' y' z' x'' y'' z''] Examples -------- >>> # constant velocity model in a 3D world with a 10 Hz update rate >>> Q_continuous_white_noise(2, dt=0.1, block_size=3) array([[0.00033333, 0.005 , 0. , 0. , 0. , 0. ], [0.005 , 0.1 , 0. , 0. , 0. , 0. ], [0. , 0. , 0.00033333, 0.005 , 0. , 0. ], [0. , 0. , 0.005 , 0.1 , 0. , 0. ], [0. , 0. , 0. , 0. , 0.00033333, 0.005 ], [0. , 0. , 0. , 0. , 0.005 , 0.1 ]]) """ if not (dim == 2 or dim == 3 or dim == 4): raise ValueError("dim must be between 2 and 4") if dim == 2: Q = [[(dt**3)/3., (dt**2)/2.], [(dt**2)/2., dt]] elif dim == 3: Q = [[(dt**5)/20., (dt**4)/8., (dt**3)/6.], [ (dt**4)/8., (dt**3)/3., (dt**2)/2.], [ (dt**3)/6., (dt**2)/2., dt]] else: Q = [[(dt**7)/252., (dt**6)/72., (dt**5)/30., (dt**4)/24.], [(dt**6)/72., (dt**5)/20., (dt**4)/8., (dt**3)/6.], [(dt**5)/30., (dt**4)/8., (dt**3)/3., (dt**2)/2.], [(dt**4)/24., (dt**3)/6., (dt**2/2.), dt]] if order_by_dim: return block_diag(*[Q]*block_size) * spectral_density return order_by_derivative(array(Q), dim, block_size) * spectral_density
[docs]def van_loan_discretization(F, G, dt): """ Discretizes a linear differential equation which includes white noise according to the method of C. F. van Loan [1]. Given the continuous model x' = Fx + Gu where u is the unity white noise, we compute and return the sigma and Q_k that discretizes that equation. Examples -------- Given y'' + y = 2u(t), we create the continuous state model of x' = [ 0 1] * x + [0]*u(t) [-1 0] [2] and a time step of 0.1: >>> F = np.array([[0,1],[-1,0]], dtype=float) >>> G = np.array([[0.],[2.]]) >>> phi, Q = van_loan_discretization(F, G, 0.1) >>> phi array([[ 0.99500417, 0.09983342], [-0.09983342, 0.99500417]]) >>> Q array([[ 0.00133067, 0.01993342], [ 0.01993342, 0.39866933]]) (example taken from Brown[2]) References ---------- [1] C. F. van Loan. "Computing Integrals Involving the Matrix Exponential." IEEE Trans. Automomatic Control, AC-23 (3): 395-404 (June 1978) [2] Robert Grover Brown. "Introduction to Random Signals and Applied Kalman Filtering." Forth edition. John Wiley & Sons. p. 126-7. (2012) """ n = F.shape[0] A = zeros((2*n, 2*n)) # we assume u(t) is unity, and require that G incorporate the scaling term # for the noise. Hence W = 1, and GWG' reduces to GG" A[0:n, 0:n] = -F.dot(dt) A[0:n, n:2*n] = G.dot(G.T).dot(dt) A[n:2*n, n:2*n] = F.T.dot(dt) B=expm(A) sigma = B[n:2*n, n:2*n].T Q = sigma.dot(B[0:n, n:2*n]) return (sigma, Q)
[docs]def linear_ode_discretation(F, L=None, Q=None, dt=1.): n = F.shape[0] if L is None: L = eye(n) if Q is None: Q = zeros((n, n)) A = expm(F * dt) phi = zeros((2*n, 2*n)) phi[0:n, 0:n] = F phi[0:n, n:2*n] = L.dot(Q).dot(L.T) phi[n:2*n, n:2*n] = -F.T zo = vstack((zeros((n, n)), eye(n))) CD = expm(phi*dt).dot(zo) C = CD[0:n, :] D = CD[n:2*n, :] q = C.dot(inv(D)) return (A, q)