Source code for filterpy.kalman.fading_memory

# -*- coding: utf-8 -*-
# pylint: disable=invalid-name, too-many-arguments, too-many-instance-attributes


"""Copyright 2015 Roger R Labbe Jr.

FilterPy library.
http://github.com/rlabbe/filterpy

Documentation at:
https://filterpy.readthedocs.org

Supporting book at:
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python

This is licensed under an MIT license. See the readme.MD file
for more information.
"""


from __future__ import (absolute_import, division, unicode_literals)
from copy import deepcopy
from math import log, exp, sqrt
import sys
import warnings
import numpy as np
from numpy import dot, zeros, eye
import scipy.linalg as linalg
from filterpy.stats import logpdf
from filterpy.common import pretty_str

[docs]class FadingKalmanFilter(object): """ Fading memory Kalman filter. This implements a linear Kalman filter with a fading memory effect controlled by `alpha`. This is obsolete. The class KalmanFilter now incorporates the `alpha` attribute, and should be used instead. You are responsible for setting the various state variables to reasonable values; the defaults below will not give you a functional filter. Parameters ---------- alpha : float, >= 1 alpha controls how much you want the filter to forget past measurements. alpha==1 yields identical performance to the Kalman filter. A typical application might use 1.01 dim_x : int Number of state variables for the Kalman filter. For example, if you are tracking the position and velocity of an object in two dimensions, dim_x would be 4. This is used to set the default size of P, Q, and u dim_z : int Number of of measurement inputs. For example, if the sensor provides you with position in (x,y), dim_z would be 2. dim_u : int (optional) size of the control input, if it is being used. Default value of 0 indicates it is not used. Attributes ---------- You will have to assign reasonable values to all of these before running the filter. All must have dtype of float x : ndarray (dim_x, 1), default = [0,0,0...0] state of the filter P : ndarray (dim_x, dim_x), default identity matrix covariance matrix x_prior : numpy.array(dim_x, 1) Prior (predicted) state estimate. The *_prior and *_post attributes are for convienence; they store the prior and posterior of the current epoch. Read Only. P_prior : numpy.array(dim_x, dim_x) Prior (predicted) state covariance matrix. Read Only. x_post : numpy.array(dim_x, 1) Posterior (updated) state estimate. Read Only. P_post : numpy.array(dim_x, dim_x) Posterior (updated) state covariance matrix. Read Only. z : ndarray Last measurement used in update(). Read only. Q : ndarray (dim_x, dim_x), default identity matrix Process uncertainty matrix R : ndarray (dim_z, dim_z), default identity matrix measurement uncertainty H : ndarray (dim_z, dim_x) measurement function F : ndarray (dim_x, dim_x) state transistion matrix B : ndarray (dim_x, dim_u), default 0 control transition matrix y : numpy.array Residual of the update step. Read only. K : numpy.array(dim_x, dim_z) Kalman gain of the update step. Read only. S : numpy.array System uncertainty (P projected to measurement space). Read only. S : numpy.array Inverse system uncertainty. Read only. log_likelihood : float log-likelihood of the last measurement. Read only. likelihood : float likelihood of last measurement. Read only. Computed from the log-likelihood. The log-likelihood can be very small, meaning a large negative value such as -28000. Taking the exp() of that results in 0.0, which can break typical algorithms which multiply by this value, so by default we always return a number >= sys.float_info.min. mahalanobis : float mahalanobis distance of the innovation. Read only. Examples -------- See my book Kalman and Bayesian Filters in Python https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python """
[docs] def __init__(self, alpha, dim_x, dim_z, dim_u=0): warnings.warn( "Use KalmanFilter class instead; it also provides the alpha attribute", DeprecationWarning) assert alpha >= 1 assert dim_x > 0 assert dim_z > 0 assert dim_u >= 0 self.alpha_sq = alpha**2 self.dim_x = dim_x self.dim_z = dim_z self.dim_u = dim_u self.x = zeros((dim_x, 1)) # state self.P = eye(dim_x) # uncertainty covariance self.Q = eye(dim_x) # process uncertainty self.B = 0. # control transition matrix self.F = np.eye(dim_x) # state transition matrix self.H = zeros((dim_z, dim_x)) # Measurement function self.R = eye(dim_z) # state uncertainty self.z = np.array([[None]*dim_z]).T # gain and residual are computed during the innovation step. We # save them so that in case you want to inspect them for various # purposes self.K = 0 # kalman gain self.y = zeros((dim_z, 1)) self.S = np.zeros((dim_z, dim_z)) # system uncertainty (measurement space) self.SI = np.zeros((dim_z, dim_z)) # inverse system uncertainty # identity matrix. Do not alter this. self.I = np.eye(dim_x) # Only computed only if requested via property self._log_likelihood = log(sys.float_info.min) self._likelihood = sys.float_info.min self._mahalanobis = None # these will always be a copy of x,P after predict() is called self.x_prior = self.x.copy() self.P_prior = self.P.copy() # these will always be a copy of x,P after update() is called self.x_post = self.x.copy() self.P_post = self.P.copy()
[docs] def update(self, z, R=None): """ Add a new measurement (z) to the kalman filter. If z is None, nothing is changed. Parameters ---------- z : np.array measurement for this update. R : np.array, scalar, or None Optionally provide R to override the measurement noise for this one call, otherwise self.R will be used. """ if z is None: self.z = np.array([[None]*self.dim_z]).T self.x_post = self.x.copy() self.P_post = self.P.copy() return if R is None: R = self.R elif np.isscalar(R): R = eye(self.dim_z) * R # y = z - Hx # error (residual) between measurement and prediction self.y = z - dot(self.H, self.x) PHT = dot(self.P, self.H.T) # S = HPH' + R # project system uncertainty into measurement space self.S = dot(self.H, PHT) + R self.SI = linalg.inv(self.S) # K = PH'inv(S) # map system uncertainty into kalman gain self.K = PHT.dot(self.SI) # x = x + Ky # predict new x with residual scaled by the kalman gain self.x = self.x + dot(self.K, self.y) # P = (I-KH)P(I-KH)' + KRK' I_KH = self.I - dot(self.K, self.H) self.P = dot(I_KH, self.P).dot(I_KH.T) + dot(self.K, R).dot(self.K.T) # save measurement and posterior state self.z = deepcopy(z) self.x_post = self.x.copy() self.P_post = self.P.copy() # set to None to force recompute self._log_likelihood = None self._likelihood = None self._mahalanobis = None
[docs] def predict(self, u=0): """ Predict next position. Parameters ---------- u : np.array Optional control vector. If non-zero, it is multiplied by B to create the control input into the system. """ # x = Fx + Bu self.x = dot(self.F, self.x) + dot(self.B, u) # P = FPF' + Q self.P = self.alpha_sq * dot(self.F, self.P).dot(self.F.T) + self.Q # save prior self.x_prior = self.x.copy() self.P_prior = self.P.copy()
[docs] def batch_filter(self, zs, Rs=None, update_first=False): """ Batch processes a sequences of measurements. Parameters ---------- zs : list-like list of measurements at each time step `self.dt` Missing measurements must be represented by 'None'. Rs : list-like, optional optional list of values to use for the measurement error covariance; a value of None in any position will cause the filter to use `self.R` for that time step. update_first : bool, optional, controls whether the order of operations is update followed by predict, or predict followed by update. Default is predict->update. Returns ------- means: np.array((n,dim_x,1)) array of the state for each time step after the update. Each entry is an np.array. In other words `means[k,:]` is the state at step `k`. covariance: np.array((n,dim_x,dim_x)) array of the covariances for each time step after the update. In other words `covariance[k,:,:]` is the covariance at step `k`. means_predictions: np.array((n,dim_x,1)) array of the state for each time step after the predictions. Each entry is an np.array. In other words `means[k,:]` is the state at step `k`. covariance_predictions: np.array((n,dim_x,dim_x)) array of the covariances for each time step after the prediction. In other words `covariance[k,:,:]` is the covariance at step `k`. """ n = np.size(zs, 0) if Rs is None: Rs = [None] * n #pylint: disable=bad-whitespace # mean estimates from Kalman Filter means = zeros((n, self.dim_x, 1)) means_p = zeros((n, self.dim_x, 1)) # state covariances from Kalman Filter covariances = zeros((n, self.dim_x, self.dim_x)) covariances_p = zeros((n, self.dim_x, self.dim_x)) if update_first: for i, (z, r) in enumerate(zip(zs, Rs)): self.update(z, r) means[i, :] = self.x covariances[i, :, :] = self.P self.predict() means_p[i, :] = self.x covariances_p[i, :, :] = self.P else: for i, (z, r) in enumerate(zip(zs, Rs)): self.predict() means_p[i, :] = self.x covariances_p[i, :, :] = self.P self.update(z, r) means[i, :] = self.x covariances[i, :, :] = self.P return (means, covariances, means_p, covariances_p)
[docs] def get_prediction(self, u=0): """ Predicts the next state of the filter and returns it. Does not alter the state of the filter. Parameters ---------- u : np.array optional control input Returns ------- (x, P) State vector and covariance array of the prediction. """ x = dot(self.F, self.x) + dot(self.B, u) P = self.alpha_sq * dot(self.F, self.P).dot(self.F.T) + self.Q return (x, P)
[docs] def residual_of(self, z): """ returns the residual for the given measurement (z). Does not alter the state of the filter. """ return z - dot(self.H, self.x)
[docs] def measurement_of_state(self, x): """ Helper function that converts a state into a measurement. Parameters ---------- x : np.array kalman state vector Returns ------- z : np.array measurement corresponding to the given state """ return dot(self.H, x)
@property def alpha(self): """ scaling factor for fading memory""" return sqrt(self.alpha_sq) @property def log_likelihood(self): """ log-likelihood of the last measurement. """ if self._log_likelihood is None: self._log_likelihood = logpdf(x=self.y, cov=self.S) return self._log_likelihood @property def likelihood(self): """ Computed from the log-likelihood. The log-likelihood can be very small, meaning a large negative value such as -28000. Taking the exp() of that results in 0.0, which can break typical algorithms which multiply by this value, so by default we always return a number >= sys.float_info.min. """ if self._likelihood is None: self._likelihood = exp(self.log_likelihood) if self._likelihood == 0: self._likelihood = sys.float_info.min return self._likelihood @property def mahalanobis(self): """" Mahalanobis distance of innovation. E.g. 3 means measurement was 3 standard deviations away from the predicted value. Returns ------- mahalanobis : float """ if self._mahalanobis is None: self._mahalanobis = sqrt(float(dot(dot(self.y.T, self.SI), self.y))) return self._mahalanobis def __repr__(self): return '\n'.join([ 'FadingKalmanFilter object', pretty_str('dim_x', self.x), pretty_str('dim_z', self.x), pretty_str('dim_u', self.dim_u), pretty_str('x', self.x), pretty_str('P', self.P), pretty_str('F', self.F), pretty_str('Q', self.Q), pretty_str('R', self.R), pretty_str('H', self.H), pretty_str('K', self.K), pretty_str('y', self.y), pretty_str('S', self.S), pretty_str('B', self.B), pretty_str('likelihood', self.likelihood), pretty_str('log-likelihood', self.log_likelihood), pretty_str('mahalanobis', self.mahalanobis), pretty_str('alpha', self.alpha) ])